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Abstract— Design and development of a quadrotor model-based flight control system entails the use of the vehicle's dynamic model. It is 
quite challenging to use the physical laws and first principle-based approaches to model the quadrotor dynamics as they are highly 
nonlinear, characterized by coupled rotor-airframe interaction. However, system identification modeling method provides a less challenging 
approach to modeling the dynamics of highly non-linear systems such as a quadrotor. This paper presents the frequency-domain system 
identification procedure for the extraction of linear models that correspond to the hover flight operating conditions of a quadrotor. 
Frequency response identification is a versatile procedure for rapidly and efficiently extracting accurate dynamic models of aerial vehicles 
from the measured response to control inputs. During the extraction of the quadrotor's model, flight test manoeuvres were used to excite 
the variables of concern for flight dynamics and control by adopting a systematic selection procedure of the model structure for the 
parameterized transfer-function model and the state-space model. The technique provides models that best characterized the vehicle's 
measured responses to the controls commands, and can be used in the design of a flight control system. 

Index Terms— Dynamic model, flight control system, frequency-domain system identification, flight dynamic and control, excitation and 
measured responses, quadrotor. 

——————————      —————————— 

1 INTRODUCTION                                                                     
Recently, the use of small-scale rotorcraft unmanned aerial 

vehicles (UAVs) for surveillance and monitoring tasks is be-
coming attractive. Amongst the various configurations of the 
small-scale rotorcraft, the use of a quadrotor gained more 
prominence, particularly in the research community [1], [2], 
[3], [4], [5]. A quadrotor is a small responsive four-rotor vehi-
cle controlled by the rotational speed of its rotors. It is com-
pact in design with the ability to carry a high payload.  
 

The dynamics of rotorcraft is substantially more complex 
than that of a fixed-wing aircraft [6], the complexity increases 
as the vehicle become smaller. The high non-linear nature of a 
quadrotor makes difficult the use of physical law and first 
principle-based approach to model its dynamics. The quad-
rotor dynamics is characterized by the coupled rotor-airframe 
dynamics. Hence, system identification method is needed to 
model the dynamics of non-linear systems such as a quad-
rotor, and the procedure is conducted in either time or fre-
quency domain. A number of studies have reported the use of 
system identification procedure to identify the dynamics of 
rotorcraft [7], [8], [9], [10]. For instance, a method for system 
identification using Neural Networks was proposed in [7], 
where input-output data was provided from nonlinear simula-
tion of X-Cell 60 small-scale helicopter, and the data was used 
to train the multi-layer perceptron combined with NNARXM 
time regression input vector to learn nonlinear behavior of the 
vehicle. A rotorcraft system response data was acquired in 
carefully devised experiment procedure in [8], and a time do-
main system identification method was applied in extracting a 
linear time-invariant system model. The acquired model was 
used to design a feedback controller consisting of inner-loop 
attitude feedback controller, mid-loop velocity feedback con-
troller and outer-loop position controller, when implemented 
on the Berkeley RUAV, the controllers showed remarkable 
hovering performance. Similarly, parametric and non-
parametric models for a rotorcraft were identified using data 

collected through identification method in [10], after which 
two control laws were designed for the vehicle attitude stabili-
zation. In [11], system identification method was applied to 
examine a high-bandwidth rotorcraft flight control system 
design. In the study, flight test and modeling requirements 
were illustrated using flight test data from a BO-105 hingeless 
rotor helicopter. A systematic way is adopted in this study to 
derive a quadrotor dynamics models using the frequency-
domain system identification method. Once the models are 
determined, a single-input-single-output (SISO) and multiple-
input-multiple-output (MIMO) control loops can be designed 
and implemented on a quadrotor 

2  SYSTEM IDENTIFICATION CONCEPT 
System identification is the procedure for deriving a 

mathematical model of a system based on experimental 
data of the system’s control inputs and measured outputs. 
The procedure involves derivation of a mathematical mod-
el based on experimental data of the vehicle's control in-
puts and measured outputs; it also provides an excellent 
tool for improving mathematical models used for rotorcraft 
flight control system design. System identification method 
can be used for derivation of both parametric and nonpar-
ametric models: examples of nonparametric models in-
clude impulse and frequency response models, and exam-
ples of parametric models are transfer function and state 
space models. The nonparametric models are directly de-
rived using experimental data and provide an input–
output (I/O) description of the system. These model types 
are based on collections of data and do not require any 
knowledge of the system structure. However, the challenge 
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of the system identification procedure is to derive a para-
metric model of a system. The first step towards the extrac-
tion of a parametric model is the derivation of a parameter-
ized model, which will serve as a logical guess of the actual 
system model. The use of an optimization algorithm de-
termines the parameters of the model that minimize the 
error between the actual system responses and the model 
responses. Estimates of those characteristics may be ob-
tained by analysis of the nonparametric model combined 
with information obtained by the first principles approach. 
The system identification procedure is an iterative process. 
Depending on the identification results, the parameterized 
model may be refined in terms of order and structure until 
a satisfactory identification error is achieved. When the 
parameterized model is known, the system identification 
method reduces to the parameter estimation problem [12]. 
A Key application of rotorcraft system identification results 
include piloted simulation models, comparison of wind 
tunnel test versus flight measurements, validation and im-
provement of physic based simulation models, flight con-
trol system development and validation 

 
There are numerous methodologies for system identifica-

tion techniques which are well described in [13], [14]. A 
major classification amongst these methodologies depends 
on whether the compared responses are considered in the 
time or frequency domain.  The similarities between fre-
quency-domain and time-domain methods are; in both, 
good results depend on proper excitation of key dynamic 
modes; multiple inputs should not be fully correlated; both 
can be used for parametric model identification that can be 
verified in the time domain. The major differences between 
the two are; the initial data for frequency-domain method 
consists of frequency responses derived from time-history 
data, while the time-domain method initial data consists of 
time history data. In addition, time domain method pro-
vides both linear and nonlinear models, whereas frequency 
domain method provides only a linearized characterization 
of the system, and a describing function for a nonlinear 
model. There exist none independent metrics to assess sys-
tem excitation and linearity in time-domain method, 
whilst, in frequency-domain method there are a number of 
metrics such as coherence function, Cramer-Rao inequality 
and cost function. 

3 ROTORCRAFT SYSTEM IDENTIFICATION 
System identification as applied to a quadrotor is a versa-

tile procedure for rapidly and efficiently extracting accurate 
dynamic models of rotorcraft from the measured response to 

control inputs. Flight test manoeuvres are used to excite the 
variables of concern for flight dynamics and control, or struc-
tural stability. Typical excitations used in system identification 
are frequency sweeps and doublets. The techniques provide a 
model that best characterizes the vehicle's measured responses 
to controls commands [15], such as (i) frequency response 
model, (ii) transfer function model and (iii) state space model. 
 
3.1 Frequency response model 
This is a nonparametric model which represents the out-
put/input amplitude ratio and phase shift of a system in an 
effective format, such as a Bode plot. It can be regarded as a 
data curve identified from the flight test data, which represent 
the ratio of the response per unit of control input as a function 
of control input frequency. The frequency response is obtained 
using the fast Fourier transform and associated windowing 
techniques. 

3.2 Transfer function model 
This model provides a closed-form equation that is a 

good representation of a frequency response data. The 
model is of the form: 
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The values of the numerator coefficients (b0, b1, ... bm)  

and denominator coefficients (a1 .....an) are determined us-
ing system identification procedure. The transfer function 
is a parametric model comprising a limited set of character-
istics parameters. 

3.3 State-space model 
This can is the parametric model of the complete differential 
equation of motion that describes the MIMO behaviour of the 
vehicle. Equation (2) represents the linear differential equation 
for a small perturbation about a trim flight condition in state-
space. 

)(
.

τ−+= tBuAxx      (2) 
 

Where the control vector u is composed of the control inputs 
and the vector of the vehicle states x comprises the response 
quantities (speed, angular rates, and attitudes angles). The 
time-delay vector τ allows for a separate time-delay value for 
each control. However, the set of available flight-test meas-
urement y is composed of a subset of the states and given by: 
 

)( τ−+= tDuCxy      (3) 
 
The values of the matrices A, B, C, D and the vector τ  are 
determined using the system identifications procedure. 

4 FREQUENCY RESPONSE SYSTEM IDENTIFICATION 

Based on [12] and [15] frequency domain identification is 
an ideal way for extracting linear rotorcraft models of high 
accuracy. One of the main advantages of this approach is 
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the use of actual flight data for deriving and validating the 
model. Additionally, frequency domain identification has a 
coherent flow of the design steps starting from the input–
output characterization of the vehicle (nonparametric mod-
eling), continuing with the extraction of the state space 
model (parametric modeling) concluding with validating 
the predicted model in the time domain. This method is 
classified as an output-error method where the fitting error 
is defined between the actual flight data frequency re-
sponses and the frequency responses predicted by the 
model.   
 

To highlight this, suppose the vehicle is excited with a 
sine-wave input x(t) of amplitude A and frequency f  in 
hertz, then: 
 

)2sin()( ftAtx π=      (4) 
 

When the transient response has decayed, the system output 
y(t) will also be a sine wave of the same frequency f, but with an 
associated amplitude B and a phase shift ϕ : 

 
)2sin()( ϕπ += ftBty     (5) 

 
This implies that for a linear time-invariant (LTI) system, 

a constant sine-wave periodic input results in a constant 
sine-wave output at the same frequency f, referred to as the 
first harmonic frequency. It is therefore important to note, 
for linear systems, the higher harmonics of the response are 
not considered, as the time function is the same for the in-
put and output. For these systems, the focus is on the am-
plitude A and B, phase shiftϕ . The parameter values A, B 
and ϕ  in this case, can be obtained from the time-history 
plots or calculated numerically using the Fourier series for 
only the first harmonic terms [16]. 

 
The frequency response function H(f) is a complex-

valued function defined by the data curves for the magnifi-
cation and phase shift at each frequency f given by: 
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The frequency response can be obtained experimentally 

by exciting the system with discrete sine-wave inputs. 

4 METRICS FOR DECIDING MODEL ACCURACY 
In the frequency response system identification technique, 

the following independent metrics are used to measure model 
accuracy in terms of system excitation, data quality and sys-
tem response linearity: 

4.1 Spectral Function 
The products of the Fourier transform computation are the 
Fourier coefficients of the input X(f) excitation and output Y(f) 
response. This leads to the definition of the three spectral func-
tions (i) input spectrum, (ii) output spectrum and (iii) cross 
spectrum. Based on [17], a rough estimate of the input auto-
spectrum is determined from the Fourier coefficients by: 
 

2)(2)( fX
T

fG xx =      (8) 

 
Similarly, a rough estimate of the output auto-spectrum or 
input PSD displays the distribution of the output squared or 
response power as function of frequency given by: 
 

2)(2)( fY
T

fG yy =      (9) 

 
Finally, a rough estimated of the cross spectrum or cross PSD 
displays the distribution of the product of input multiplied by 
output or input-output power transfer as a function of fre-
quency, and is given by: 
 

)(*)(2)( fYfY
T

fG yy =    (10) 

 
Note that, the cross spectrum is a complex-valued function 
and thus conveys input=output phase information. 

4.1 Coherence function 
The coherence function is an important product of the smooth 
spectral functions. It can be interpreted as the fraction of the 
output spectrum that is linearly attributable to the input spec-
trum at a certain frequency. 
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The coherence function is a normalized metric having a value 
ranging from zero to unity. It is an indicator of the linearity 
between the input and output. A value of the coherence func-
tion close to unity indicates that the output is significantly 
linearly correlated with the input of the system. In practical 
applications, there are several reasons for a low value of the 
coherence function [18]. Following a simple guide, the coher-
ence function can be used to effectively and rapidly examine 
the accuracy of frequency-response identification [12]. Gener-
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ally, if the coherence function satisfies Equation (12), and is 
not oscillating, then the frequency response can be said to 
have acceptable accuracy [15]. 
 

6.02 ≥xyγ      (12) 
 

4.3 Craner-Rao inequality 
The Cramer-Rao inequality is another reliable measure of pa-
rameter accuracy in the frequency-response identification 
method. The inequality establishes the Cramer-Rao bounds 
(CR) as the minimum expected standard deviation in a pa-
rameter estimate obtained from many repeated manoeuvres. 
The Cramer-Rao bound is given by: 
 

CR≥σ      (13) 
 

Relative values of the Cramer-Rao bounds associated with the 
identification parameters are of key significance for refining 
the model structure. High values of Cramer-Rao bounds for 
individual parameter suggest indicate poorly identified pa-
rameters and suggest these parameters to be removed or fixed 
in the model structure. 
 

4.4 Cost function 
The quadratic factor J referred to as cost function is also useful 
in deciding an acceptable level of model accuracy. For flight 
dynamic modeling, a cost function of J ≤ 100, generally repre-
sents an acceptable level of accuracy, whereas a cost function 
of J ≤ 50 is expected to produce an exact match of the flight 
data. 

5 FREQUENCY RESPONSE SYSTEM IDENTIFICATION 
PROCEDURE 

Fig. 1 illustrates the sequence of a frequency response identifi-
cation procedure, in which the initial step is the excitation of 
the vehicle using specially designed input signals, such as a 
frequency sweep, to excite the vehicle dynamics over a desired 
frequency range. The choice of the desired frequency range 
has an important role in the identification process and has to 
be wide enough in order to capture all the dynamic effects of 
interest (i.e., airframe and rotor dynamics). 
 
After some preprocessing to eliminate the noise and other 
types of inconsistencies in the time domain output data, the 
second phase computes the input–output frequency responses 
using a Fast Fourier Transform. This phase of the process es-
tablishes the nonparametric model of the vehicle. The design 
of the parameterized linear state space model follows using 
information from the physical laws and the nonparametric 
modeling phase.  
 
After some preprocessing to eliminate the noise and other 
types of inconsistencies in the time domain output data, the 
second phase computes the input–output frequency responses 
using a Fast Fourier Transform. This phase of the process es-

tablishes the nonparametric model of the vehicle. The design 
of the parameterized linear state space model follows using 
information from the physical laws and the nonparametric 
modeling phase.  
 

 
Fig. 1. Flowchat for frequency response system identification. 

After some preprocessing to eliminate the noise and other 
types of inconsistencies in the time domain output data, the 
second phase computes the input–output frequency responses 
using a Fast Fourier Transform. This phase of the process es-
tablishes the nonparametric model of the vehicle. The design 
of the parameterized linear state space model follows using 
information from the physical laws and the nonparametric 
modeling phase.  
 
The frequency domain identification method is only suitable 
for the derivation of a linear parametric model. Although the 
rotorcraft dynamics are nonlinear, around certain trimmed 
flight conditions, the nonlinearities from the equations of mo-
tion and aerodynamics are relatively mild. When this is the 
case, a linearized model is sufficient to accurately predict the 
vehicle's response. Usually, the validity of the linearized mod-
el is adequate over a wide area of the flight envelope around 
the trim point. However, a single linear model in most cases is 
not sufficient to represent globally the flight envelope. There-
fore, different models are required for each operating condi-
tion. The final step of the identification procedure is the vali-
dation of the model. This step takes place in the time domain, 
with different flight data from the identification procedure. 
For the same input sequence, the vehicle responses from the 
flight data are compared with the predicted values of the 
model, obtained by integration of the state space model. How-
ever, if the validation portion of the problem is not satisfactory 
the parametric modeling setup should be modified and the 
procedure repeated. 

6 SOFTWARE FOR FREQUENCY RESPONSE METHODS 
A number of software packages can be used for rotorcraft 
frequency-response identification. Amongst the popular 
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ones include: MATLAB/SIMULINK, NI Labview and 
CIFER (Comprehensive Identification from Frequency Re-
sponses). MATLAB and LabView are generalized packages 
which for solving various engineering problems. However, 
CIFER© software package was developed at Ames research 
centre primarily for the task of aircraft and rotorcraft fre-
quency response identification from flight-test data, and 
hence it is well suited for application in this study. The 
program is composed of six utility packages that interact 
with a sophisticated database of frequency responses. The 
importance of a well organized and flexible database sys-
tem is very crucial in a large scale MIMO identification 
procedure of an air vehicle. The CIFER© package is de-
signed to cover all the intermediate steps necessary for the 
development of air vehicles parametric modeling. The key 
characteristic of CIFER© is its ability to generate and ana-
lyse high quality frequency responses for MIMO systems, 
by using Discrete Fourier Transform (DFT) and windowing 
algorithms [19]. 

6.1 Overview of CIFER package 
The CIFER® software facilitates the use of frequency domain 
analysis of flight data to achieve a number of objectives, in-
cluding handling quality analysis and specification compli-
ance, vibration analysis, and identification of linearized mod-
els. The package contains various utilities that can be used 
interactively as shown in Fig. 2. 

 

 
Fig. 2. CIFERs software and database components. 

6.2 Data flow in CIFER 
Fig. 2 depicts how the CIFER software package is linked to a 
relational database utility to facilitate the computation of the 
frequency response identification method of Fig. 3. 
 
The six core programs within the CIFER perform the following 
processes: data conditioning and performing FFTs, FRESPID; 
multi-input conditioning, MISOSA; window combination, 
COMPOSITE; transfer-function model identification, NAVFIT; 
state-space model identification, DERIVID and model verifica-
tion, VERIFY. The package also has utilities that allow inter-
facing to many standard data formats, including MATLAB, 
Excel, ASCII comma and tab delimited, among others. Fre-
quency responses generated during any session of the system 

identification procedure are stored and catalogued in a dedi-
cated database folder. The database entry that is available to 
all CIFER programs and utilities contains all the information 
about how the procedure was carried out. In addition, the da-
tabase can be shared by multiple users of CIFER and multiple 
databases can be combined or compressed.  
 

 
Fig. 3. CIFER software components. 

 
As depicted in Fig 3, time-history data enters the system at 
two points. The first set of time-history is processed into fre-
quency responses at the beginning of the CIFER procedure. At 
the end of the procedure, a second set of time-history data 
from inputs dissimilar from those used for the identification is 
then used for the model verification. 
 
Three programs are run sequentially to generate the MIMO 
frequency-response database. Beginning with the time-history 
data, FREPID computes SISO frequency response for a range 
of spectral windows using a chirp z-transform. The results are 
then written into the frequency-response database. Next, 
MISOSA reads in the SISO data from the frequency-response 
database and conditions these responses for the effect of mul-
tiple, partially correlated controls that might have been pre-
sent in the same manoeuvre record. Again, the results are 
written back to the database. Finally, COMPOSITE performs 
optimization across the multiple spectral windows to achieve 
a final frequency-response database with excellent resolution, 
broad bandwidth and low random error. 
 
Two programs support parametric model identification. 
NAVFIT is used to identify a pole-zero transfer-function mod-
el that best fits a selected SISO frequency-response. DERIVID 
is used to identify a complete generic state-space model struc-
ture that best fits the MIMO frequency-response database. 
Lastly, VERIFY is used to check the identified model's time-
domain response based on time-history data from manoeuvres 
different from those used for the identification. 
 
An important utility program is the smoothing from aircraft 
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kinematics (SMACK), although not part of CIFER software 
package, is used for processing of time-history data before the 
identification proper. Table 1 summarizes the functions of the 
CIFER components. 
 

Table 1 
Summary of the CIFER components functions 

Serial Component Function 
1 Time history data Input to FRESPID and SMACK 
2 SMACK Data consistency 
3 FRESPID Frequency-response identification 
4 MISOSA Multi-input conditioning 
5 COMPOSITE Window combination 
6 NAVFIT Transfer-function identification 
7 DERIVID State-space model identification 
8 VERIFY State-space model verification 

7 QUADROTOR IDENTIFICATION 
This section presents the general requirements and procedure 

that leads to the comprehensive frequency response system iden-
tification of a quadrotor using the CIFER software package. The 
description of the vehicle platform used has been presented in 
[25]. 

7.1 Model structure determination 
An important and challenging aspect in parametric model 
identification process is the proper selection of the different 
aspects of model structure that depends on many factors, criti-
cal amongst include (i) the ultimate application of the model; 
(ii) selection of the input-to-output variable pair; (iii) selection 
of frequency range of the fit; (iv) selection of the order of nu-
merator (n) and denominator (m); (v) inclusion of the equiva-
lent time delay τ  and (vi) fixing or freeing specific coefficients 
in the fitting process. 

7.2 Parameterized transfer function model 
A transfer-function model is the linear input-to-output description 
of a dynamic system; it represents the simplest form of paramet-
ric model that can be extracted from the numerical frequency-
response database. The transfer-function model is sufficient for 
describing the majority of the quadrotor dynamics, including 
handling quality analysis, rotors and airframe models and flight 
control system design. In transfer-function modeling, the system 
to be modeled is treated like a black box with no attempt to rep-
resent the actual dynamics of the vehicle. Transfer-function mod-
els are composed of a numerator and denominator polynomial in 
the Laplace variable s, with an equivalent time delay to account 
for additional unmodeled high frequency dynamics and transport 
delays in the system. However, despite this simplification, the 
transfer-function model can provide a remarkably accurate repre-
sentation of system response behaviour and has the form of Equa-
tion (1). The order of the numerator and denominator orders are 
selected in such that a good fit of the frequency-response data in 
the frequency range of interest is achieved. 

7.2 Quadrotor state-space model 
Determination of the parameterized model is one of the critical 
aspects in the frequency domain identification method. The chal-

lenge here is deciding on which stability derivatives should be 
included in the development of the parameterized model. To sim-
plify the identification task, the linear parameterized model used 
for parameter identification of the quadrotor is based on Mettler’s 
model (with some modifications) described in [20], [21], [22] for 
the Carnegie Mellon’s Yamaha R-50 and MIT’s X-Cell-60. The 
structure of the parameterized model proposed by Mettler has 
already been successfully used for the parametric identification of 
several helicopters of different sizes and specifications [23] and 
[24]. The ability of this model structure to establish a generic 
solution to the small-scale rotorcraft identification problem is 
based on two important factors: a) that the Mettler’s parameter-
ized model provides a physically meaningful representation of 
the system dynamics. All stability derivatives included in this 
model are related to kinematic and aerodynamic effects of the 
airframe and the rotor systems, and b) the ability to represent the 
many cross-coupling effects that dominate the rotorcraft motion. 
This allows for the integration of the rotors model with the linear-
ized equations of motion. The modifications made to the pro-
posed parameterized model is due to the absence of a stabilizer 
bar on quadrotor, which provides additional damping to the pitch 
and roll rates. However, this function on the quadrotor is ad-
dressed by proportional regulation of the rotor speeds. 

 
The quadrotor physical model structure represents direct im-

plementation of the equations of motion of the vehicle. In a sys-
tem identification procedure, the choice of model structure de-
pends on those points highlighted previously. Hence, Equations 
(2) and (3) can be written in the state-space form as: 
 

)(
.

τ−+= tGuFxxM     (14) 
 

.

10 xHxHy +=     (15) 
 

The matrices M, F, G and vector τ contain model parameters 
to be identified as well as the known model parameters and con-
stants. Time delays are sometimes included to account for un-
modeled system dynamics. A measurement vector y is included 
to account for the difficulty associated with directly measuring 
the state x. The matrices H0 and H1 are composed of known con-
stants, such as gravity, unit conversion, kinematics, etc. However, 
once the identification parameters are determined, Equations (14) 
and (15) can easily be expressed in the conventional state-space-
form (Equations 2 and 3): 

 
FMA 1−=      (16) 
GMB 1−=      (17) 

FMHHC 1
10

−+=     (18) 

GMHD 1
1

−=      (19) 
 

7.3 State and control variables 
There are nine states and four control variables in the quadrotor's 
6-DOF equations describing its airframe motion, centre of mass 
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(CM) and body rotation, given by: 
 

[ ]Trqpwvux ψθφ=  (20) 
 

Tuuuuu ][ 4321=    (21) 
 

 
Where vB = [u, v, w]T and ωB =[p, q, r]T denote the linear and 

angular velocities components of the vehicle relative to the body-
fixed frame. 

 

7.4 Output vector 
During the vehicle's take-off, the output vector consists of the 
quadrotor's linear and angular velocities, and aZ, the linear accel-
eration along z-axis. However, at hover flight, acceleration along 
the x and y axes equals zero, and the vector is reduced to: 

 
T

zarqpwvuy ][=   (22) 
 

7.5 Parameterized state-space model 
The quadrotor parameterized state-space model represents the 
linearized dynamics of the perturbed states and control inputs 
of the helicopter from a trimmed reference flight condition. 
The trim operating condition considered is the hover mode. 
Although the parameterized model is associated with the per-
turbed values of the states and inputs, the linear state-space 
parameterized model is given by: 
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The unknown coefficient to be identified in matrices A and B 
of the parameterized model structure are the conventional 
stability and control derivatives, which result from Taylor-
series representation of the vehicle's aerodynamics, composed 
of stability and control derivatives of the vehicle, and are a 
complex combination of the vehicle geometric parameters, 
aerodynamic parameters and inertia parameters. These deriv-
atives also represent the complex combination of the quad-
rotor geometric and inertial parameters. 

8 THE IDENTIFICATION PROCESS 
The identification procedure for the quadrotor starts with the 

collection of the experimental time domain flight data. For each 
flight data record, the quadrotor was set to hover, and a piloted 
frequency sweep excitation signal was applied to the four-control 
variables (u1, u2, u3, u4) one after the other. The bandwidth of the 
excitation signal ranges between 0.2 – 20 rad/sec, whilst the fre-
quency sweep was executed by the primary input of interest, the 
secondary inputs were kept uncorrelated to the main input main-
taining the vehicle near the reference operating point. For each 
control input, four records have been collected; the minimum and 
maximum frequency of the excitation sweeps and the duration of 
the flight records for each control input are shown in Table 2. 

 
 

 
Table 2 

Summary of the CIFER components functions 
Control channel 𝝎𝒎𝒊𝒏 (rad/sec) 𝝎𝒎𝒂𝒙 (rad/sec) 

u1 0.2 20 
u2 1 20 
u3 1 20 
u4 2 20 

 
The variables collected for the identification process were the 

Euler angles θ, ϕ, ψ; angular velocities p, q, r  and body frame 
acceleration aZ  as well as the linear velocity w. For translation, 
the body frame accelerations were selected instead of the velocity 
measurements, as these provide a more symmetrical response 
around the trim value, facilitating the calculations of the respec-
tive FFTs. After the collection of the time domain experimental 
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data, flight records excited by the same primary control input 
were concatenated into a single record. The time domain experi-
mental data was then entered in the CIFER software and pro-
cessed using the PRESPID, MISOSA and COMPOSITE to pro-
duce a high quality MIMO frequency response database. This 
database comprises the conditioned frequency responses and par-
tial coherences for each input–output pair. 

 
After calculating the flight data frequency responses, the par-

ametric models were extracted using the NAVFIT module to de-
termine the model transfer-function parameters. The DERIVID 
module was used to extract and determine the state-space model 
and its parameters. In both cases, the model parameters were de-
termined such that the estimated frequency responses provide 
best fits to the flight data frequency responses.  

 
The first task executed in the parametric modeling process was 

the determination of the flight data frequency response input-
output pairs, to be included in the identification process, followed 
by the determination of the frequency range of interest. For the 
quadrotor, the selected frequency responses and their correspond-
ing ranges are depicted in Table 5.9. The coherence function ϒ2 
has been used as the criterion for the frequency response selec-
tion, for which the coherence function has values greater than 0.6 
over the desired frequency range of the model. 

The determination of the frequency response pairs to be in-
cluded in the identification process was followed by extraction of 
the transfer-function model; which involved determining the 
structure and order of the parameterized model, and followed by 
making initial guesses for the values of the model parameters. 
CIFER uses an optimization algorithm which computes the cost 
function J satisfying Equation 5.20 for each input-output pair. 
The optimization algorithm is based on an iterative robust secant 
algorithm that reduces the phase and magnitude error between the 
state space model and the flight data frequency responses. The 
execution of the optimization algorithm continues until the aver-
age of the selected frequency responses and cost functions are 
minimized.  

 
Similarly, the parametric state-space model extraction involved 

an iterative procedure using DERIVID. The iteration run until the 
most suitable stability and control derivatives of the state-space 
model were selected based on the three accuracy metrics dis-
cussed previously, namely: frequency responses cost functions; 
percentage of the Cramér–Rao (CR) bound for each parameter; 
percentage of the insensitivity of each parameter with respect to 
the cost function. Parameters having high CR bound were 
dropped or fixed to a specific value, high insensitive parameters 
have minimal or no effect on the computation of the cost function 
and were dropped. 

9 IDENTICATION RESULTS 
The final extracted model obtained from the procedure de-

scribed in the previous section has an excellent average cost func-
tions value of 21 and produced physically reasonable values for 

the stability derivatives. The identified stability and control de-
rivatives with their respective CR bound and insensitivity per-
centage for the quadrotor are depicted n Table 5.10. For instance, 
the angular body position damping parameters Yθ and Yϕ  exhibit 
negative (stable) values is an indication that the vehicle has a 
good angular position damping, whereas a positive Yψ points to 
an unstable yaw mode.  

 
Table 3 

Linear state space model identified parameters for matrix B 
Parameter Value CR Insensitivity % 
Yu1 −6.965E + 08 126.2 99.2 
Yu2 1.917E + 05 66.1 99.5 
Yu3 3.288E+04 62.3 99.6 
Yu4 2.316E+04 280.2 159 
Lu1 -1.315E+09 12.0 6.21 
Lu2 3.594E+04 2.4 5.41 
Lu3 1.952E+04 2.1 5.20 
Lu4 1.332E+04 7.7 8.8 
Nu1 1.348E+04 13.3 0.45 
Nu2 1.327E+04 17.0 0.85 
Nu3 1.347E+04 16.6 0.99 
Nu4 1.444E+04 18.9 1.42 
u1 3.803E+06 3.7 0.22 
u2 2.4656E+07 4.6 0.32 
u3 2.656E+07 4.1 0.40 
u4 2.069E+06 7.2 1.1 
 
Some of the identified parameters exhibit high CR bounds and 

insensitivities (Table 5.10), i.e., the angular position derivatives 
of the roll and pitch Lθ, Lϕ, and Lѱ can be dropped from the mod-
el without sacrificing the accuracy of the identification results. 
However, these derivatives are kept to maintain the final state 
space dynamics as close as possible to the parameterized model. 
According to [15], the large uncertainty of the specific stability 
derivatives results from the lack of low frequency excitation. The 
signs and magnitudes of the angular position damping derivatives 
Yθ and Yϕ, together with the low value accuracy metrics, indicate 
that these parameters are completely reliable. The most important 
parameters of the state space model are the control variable cou-
pling terms Nui (in matrix B) presented in Table 4, and their val-
ues indicate the quadrotor is a high maneuverable and agile vehi-
cle.  

9.1 Altitude model  
The magnitude, phase, coherence and error plots of the quad-
rotor altitude model response obtained from the CIFER identi-
fication is depicted in Fig. 5.6. The model shows excellent co-
herence (ϒ2 ≈ 0.7) from 1 rad/sec up to 9 rad/sec, with both 
magnitude and phase constant to within 10% over excitation 
frequency range; hence this indicates a good model. The ex-
perimental flight data is represented with a second order criti-
cally damp system (Equation 25). Similarly, the magnitude of 
the identified model fits the experimental flight data from 0.1 
rad/s to 1 rad/s, while the phase fits from zero rad/s to 1.2 
rad /s as depicted in Fig. 4. 
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Fig. 4. (a) Altitude model (b) model versus flight data fit. 

9.2 Roll attitude model 
The magnitude, phase, coherence and error plots of the quadrotor 
roll attitude response obtained from the CIFER identification 
depicted in Fig. 5a, shows excellent coherence (ϒ2 ≈ 0.7) from 1 
rad/sec up to 12 rad/sec, with both magnitude and phase constant 
to within 1 % over excitation frequency range, hence indicates a 
good model. However, at 0.6 rad/s, there was a 90 degrees phase 
a rollover. The vehicle's roll response experimental flight data is 
represented with a second order critically damp system (Equation 
26). Similarly, the magnitude and phase of the identified model 
fits the experimental flight data from over the entire frequency 
range as depicted in Fig. 5b. 
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Fig. 5. Roll attitude model (b) model versus flight data fit. 

9.3 Pitch attitude model 
Similar to the vehicle's roll attitude model, the magnitude, 
phase, coherence and error plots of the quadrotor pitch atti-
tude model depicted in Fig. 6a, shows excellent coherence (ϒ2 

≈ 0.7) from 1 rad/sec up to 12 rad/sec, with both magnitude 
and phase constant to within 1% over excitation frequency 
range. Hence, this indicates a good model; however, at 0.6 
rad/s, there was a 90 degrees phase a rollover. The vehicle's 
roll response experimental flight data is represented with a 
second order critically damp system (Equation 27). The magni-
tude and phase of the identified model fits the experimental 
flight data from over the entire frequency range as depicted in 
Fig. 6b. 
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Fig. 6. Pitch attitude model (b) model versus flight data fit. 

 

9.4 Yaw attitude model 
The magnitude, phase, coherence and error plots of the quad-
rotor yaw attitude model depicted in Fig. 7a shows poor co-
herence (ϒ2 <0.6 ) at lower and upper frequency, a good coher-
ence over the middle frequency (ϒ2 >0.7) from 0.3 rad/sec up 
to 11.5 rad/sec having both magnitude and phase constant at 
within 5% over the frequency range. Hence, this indicates a 
good model. The vehicle's yaw response experimental flight 
data is represented with a second order critically damp system 
(Equation 28). Similarly, the magnitude and phase of the iden-
tified model fits the experimental flight data from over the 
entire frequency range as depicted in Fig. 7b. 
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Even though the single axis transfer-functions can accurately 

model the on-axis angular and vertical responses, the MIMO 
state-space models are needed to fully characterize the coupled 
dynamics of the quadrotor. The 6-DOF hover state-space model 
generated in the system identification process exhibited coupled 
dynamics between its responses to the inputs siganals. However, 
based on [15], the F and G matrices containing the stability and 
control derivatives were tuned by CIFER such that the model 
match those derived from the flight test data. The MIMO model 
shows a good agreement between the on-axis state-space model 
and the transfer-functions control and damping derivatives. The 
on-axis delays on the input control channels are as follows; a 
time delay of 0.254 rad/sec (Equation 25) on the roll channel, 
0.267 rad/sec (Equation 26) on the pitch channel, 0.074 rad/sec 
(Equation 27) on the yaw channel, and 2.4 rad/sec (Equation 28) 
on the altitude channel. In the transfer function models, the gains 
are the control derivatives and the poles are the damping deriva-
tive. The slight change in values occurs since the state-space 
model accounts for the simultaneous fit to the complete MIMO 
frequency responses. By and large, the models show excellent fit 
with the actual and predicted frequency reposnse which can be 
use for flight control system design. 

5 CONCLUSION 
This paper has presented the frequency-domain system identi-

fication of a quadrotor. The hover flight condition of the vehicle 
was considered as the reference flight operating point in extract-
ing the vehicle's parameterized model using the CIFER software 
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package. The identification procedure started with the collection 
of the experimental time domain flight data. For each flight data 
record, the quadrotor was set to hover and a piloted frequency 
sweep excitation signal was applied to the four control variables, 
one after the other, with the bandwidth of the excitation signal 
ranged between 0.2 rad/sec – 20 rad/sec. While the frequency 
sweep was executed by the primary input of interest, the second-
ary inputs were kept uncorrelated to maintain the vehicle near the 
reference operating point. A systematic selection procedure of the 
model structure for the parameterized transfer-function model 
and the state-space model was employed, with emphasis on the 
selection of stability and control derivatives included in the pa-
rameterized state-space model. The extraction of the vehicle’s 
transfer-function model involved the determination of the struc-
ture and order of the parameterized model, and the determination 
of the values of the model parameters using an optimization algo-
rithm. The optimization algorithm was based on an iterative ro-
bust secant algorithm that reduced the phase and magnitude error 
between the state space model and the flight data frequency re-
sponses, the iteration was executed until the average of the se-
lected frequency responses cost functions were minimized. Simi-
larly, the parametric state-space model extraction involved an 
iterative procedure until the most suitable stability and control 
derivatives of the state-space model were selected based on the 
three accuracy metrics namely: frequency responses cost func-
tions; percentage of the Cramér–Rao (CR) bound for each pa-
rameter; percentage of the insensitivity of each parameter with 
respect to the cost function. The model of the quadrotor extracted 
possesses an excellent average cost functions value of 21 and 
produced physically reasonable values for the stability deriva-
tives. Similarly, the MIMO model shows a reasonable agreement 
between the on-axis state-space model and the transfer-functions 
control and damping derivatives. 
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